Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Proteome Analysis of Poplar Seed Vigor.

Identifieur interne : 001B78 ( Main/Exploration ); précédent : 001B77; suivant : 001B79

Proteome Analysis of Poplar Seed Vigor.

Auteurs : Hong Zhang [République populaire de Chine] ; Wei-Qing Wang [République populaire de Chine] ; Shu-Jun Liu [République populaire de Chine] ; Ian Max M Ller [Danemark] ; Song-Quan Song [République populaire de Chine]

Source :

RBID : pubmed:26172265

Descripteurs français

English descriptors

Abstract

Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.

DOI: 10.1371/journal.pone.0132509
PubMed: 26172265
PubMed Central: PMC4501749


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Proteome Analysis of Poplar Seed Vigor.</title>
<author>
<name sortKey="Zhang, Hong" sort="Zhang, Hong" uniqKey="Zhang H" first="Hong" last="Zhang">Hong Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei Qing" sort="Wang, Wei Qing" uniqKey="Wang W" first="Wei-Qing" last="Wang">Wei-Qing Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shu Jun" sort="Liu, Shu Jun" uniqKey="Liu S" first="Shu-Jun" last="Liu">Shu-Jun Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="M Ller, Ian Max" sort="M Ller, Ian Max" uniqKey="M Ller I" first="Ian Max" last="M Ller">Ian Max M Ller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse</wicri:regionArea>
<wicri:noRegion>Slagelse</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Song Quan" sort="Song, Song Quan" uniqKey="Song S" first="Song-Quan" last="Song">Song-Quan Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26172265</idno>
<idno type="pmid">26172265</idno>
<idno type="doi">10.1371/journal.pone.0132509</idno>
<idno type="pmc">PMC4501749</idno>
<idno type="wicri:Area/Main/Corpus">001C17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C17</idno>
<idno type="wicri:Area/Main/Curation">001C17</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C17</idno>
<idno type="wicri:Area/Main/Exploration">001C17</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Proteome Analysis of Poplar Seed Vigor.</title>
<author>
<name sortKey="Zhang, Hong" sort="Zhang, Hong" uniqKey="Zhang H" first="Hong" last="Zhang">Hong Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Wei Qing" sort="Wang, Wei Qing" uniqKey="Wang W" first="Wei-Qing" last="Wang">Wei-Qing Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Shu Jun" sort="Liu, Shu Jun" uniqKey="Liu S" first="Shu-Jun" last="Liu">Shu-Jun Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="M Ller, Ian Max" sort="M Ller, Ian Max" uniqKey="M Ller I" first="Ian Max" last="M Ller">Ian Max M Ller</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, Denmark.</nlm:affiliation>
<country xml:lang="fr">Danemark</country>
<wicri:regionArea>Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse</wicri:regionArea>
<wicri:noRegion>Slagelse</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Song, Song Quan" sort="Song, Song Quan" uniqKey="Song S" first="Song-Quan" last="Song">Song-Quan Song</name>
<affiliation wicri:level="3">
<nlm:affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Humidity (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Proteomics (MeSH)</term>
<term>Seeds (growth & development)</term>
<term>Seeds (metabolism)</term>
<term>Seeds (physiology)</term>
<term>Temperature (MeSH)</term>
<term>Time Factors (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Facteurs temps (MeSH)</term>
<term>Graines (croissance et développement)</term>
<term>Graines (métabolisme)</term>
<term>Graines (physiologie)</term>
<term>Humidité (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Protéomique (MeSH)</term>
<term>Température (MeSH)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Graines</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Graines</term>
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Graines</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Seeds</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humidity</term>
<term>Proteomics</term>
<term>Temperature</term>
<term>Time Factors</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Humidité</term>
<term>Protéomique</term>
<term>Température</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26172265</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Proteome Analysis of Poplar Seed Vigor.</ArticleTitle>
<Pagination>
<MedlinePgn>e0132509</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0132509</ELocationID>
<Abstract>
<AbstractText>Seed vigor is a complex property that determines the seed's potential for rapid uniform emergence and subsequent growth. However, the mechanism for change in seed vigor is poorly understood. The seeds of poplar (Populus × Canadensis Moench), which are short-lived, were stored at 30 °C and 75 ± 5% relative humidity for different periods of time (0-90 days) to obtain different vigor seeds (from 95 to 0% germination). With decreasing seed vigor, the temperature range of seed germination became narrower; the respiration rate of the seeds decreased markedly, while the relative electrolyte leakage increased markedly, both levelling off after 45 days. A total of 81 protein spots showed a significant change in abundance (≥ 1.5-fold, P < 0.05) when comparing the proteomes among seeds with different vigor. Of the identified 65 proteins, most belonged to the groups involved in metabolism (23%), protein synthesis and destination (22%), energy (18%), cell defense and rescue (17%), and storage protein (15%). These proteins accounted for 95% of all the identified proteins. During seed aging, 53 and 6 identified proteins consistently increased and decreased in abundance, respectively, and they were associated with metabolism (22%), protein synthesis and destination (22%), energy (19%), cell defense and rescue (19%), storage proteins (15%), and cell growth and structure (3%). These data show that the decrease in seed vigor (aging) is an energy-dependent process, which requires protein synthesis and degradation as well as cellular defense and rescue.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Wei-Qing</ForeName>
<Initials>WQ</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Shu-Jun</ForeName>
<Initials>SJ</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Møller</LastName>
<ForeName>Ian Max</ForeName>
<Initials>IM</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Biology and Genetics, Aarhus University, Flakkebjerg, Slagelse, Denmark.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Song-Quan</ForeName>
<Initials>SQ</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D006813" MajorTopicYN="N">Humidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012639" MajorTopicYN="N">Seeds</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26172265</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0132509</ArticleId>
<ArticleId IdType="pii">PONE-D-15-06598</ArticleId>
<ArticleId IdType="pmc">PMC4501749</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2001 Apr;52(357):701-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012;13:309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22793791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 May;90(5):749-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21659171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Mar;57(4):593-612</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 Dec;50(12):1549-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19093973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2007;47:263-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16970545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Sep;148(1):620-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Aug;135(4):2241-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Apr;71(5-6):515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20079503</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Feb 7;13(2):606-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24341390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Aug;111(4):1299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2009 Jan;51(1):67-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 3;462(7273):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:459-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17288534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 May;11(9):1569-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21432998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2015 Jan;86:1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25461695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1271-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22167260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013;13:137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24053168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2011 Oct;143(2):126-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2014 Apr;353(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24460534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2010 Oct;45(5):331-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2002 Aug 19;1577(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12151089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jun;138(2):790-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15908592</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2013;2013:353270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23984351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):907-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2001 May;67(5):2365-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Mar;3(3):363-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8220448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1102-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16998084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 Jan 29;391(6666):485-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9461215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3289-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21430292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:249-279</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):910-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Oct 9;51(40):8027-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22989207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2012 Apr 3;75(7):2109-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22270011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(4):e62868</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23658654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):835-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2014 Apr;42(2):419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24646254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2012;63:507-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22136565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2011 Aug 15;438(1):63-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21631432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Sep 2;10(9):3891-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21755932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2002;71:701-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12045109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):358-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18331429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Sep;20(9):2387-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2012 Feb 2;75(4):1247-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22108046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2011 Apr 1;74(4):389-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Sep 5;278(36):34309-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12777385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Feb;1809(2):67-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20800708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2003 Feb 1;143-144:621-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12604248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prep Biochem Biotechnol. 2014;44(5):480-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24397719</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Danemark</li>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Hong" sort="Zhang, Hong" uniqKey="Zhang H" first="Hong" last="Zhang">Hong Zhang</name>
</noRegion>
<name sortKey="Liu, Shu Jun" sort="Liu, Shu Jun" uniqKey="Liu S" first="Shu-Jun" last="Liu">Shu-Jun Liu</name>
<name sortKey="Song, Song Quan" sort="Song, Song Quan" uniqKey="Song S" first="Song-Quan" last="Song">Song-Quan Song</name>
<name sortKey="Wang, Wei Qing" sort="Wang, Wei Qing" uniqKey="Wang W" first="Wei-Qing" last="Wang">Wei-Qing Wang</name>
</country>
<country name="Danemark">
<noRegion>
<name sortKey="M Ller, Ian Max" sort="M Ller, Ian Max" uniqKey="M Ller I" first="Ian Max" last="M Ller">Ian Max M Ller</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B78 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B78 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26172265
   |texte=   Proteome Analysis of Poplar Seed Vigor.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26172265" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020